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Moore’s law “P=L

Moore’s Law: The number of transistors on microchips doubles every two years [\l

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Evolution of transistor size “P=L

Development in electronic
devices based on reducing

transistor size -
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Microprocessor power consumption EPFL
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Data center power consumption EPFL

Data Centers and Their
Increasing Energy Appetite

Estimated electricity consumption of data centers”
compared to selected countries in 2022, in TWh
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Combining electron charge and spin: Spintronics

Need of new technology allowing
simultaneously:

1) Reduced memory size

2) Reduced power consumption

electronics magnetism

SemiconductorDevices Magnetic devices
- Random access memory - Hard drive
- Integrated circuits e
— Microprocessor
‘-.'l’-‘ W e

Combination or Integration

L] ¢
1- Data processing and storage in single chip Smgle Device
2- Less power T

3-Faster Spintronics : Future Devices

4- Random access memory is non-volatile
5- No loss of data if power suddenly off
6- No boot up, instantly works

7- High storage density

8- Low cost

S. M. Yakout; Journal of Superconductivity and Novel Magnetism (2020) 33:2557-2580




Two success stories EPFL

Reading head in HDD

Giant Magnetoresistance (GMR)
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Magnetism in materials: localized vs delocalized spins “P-L

LOCALIZED MAGNETISM DELOCALIZED MAGNETISM
Integral number of 3d or 4f electrons Nonintegral number of unpaired spins
on the ion core; Integral number of unpaired spins; per atom.
Discreet energy levels. Spin-polarized energy bands
with strong correlations.
Ni* 38 m=2yp, —— 3d° Ni 3d244s06  m = 0.6 g
Y )/

Y= exp(-r/a,) B ' r Y = exp(-ik.r)
Boltzmann statistics Fermi-Dirac statistics

4f metals localized electrons

4f compounds localized electrons

3d compounds localized/delocalized electrons

3d metals delocalized electrons.

Above the Curie temperature, neither localized nor delocalized moments disappear, they just
become disordered in a paramagnetic state when T > T..

Ref: J.M.D. Coey, Magnetism and magnetic materials (Cambridge).



Complementary magnetism courses during Spring semester “P=L

Spintronics: development of devices using electron spin as an additional degree Spintronics: basics and applications
of freedom to boost performance. The course provides the basis necessary to
understand and describe spin dynamics in solids and nanostructures.

PHYS-510 / 4 credits Thursday 08:15-12:00

@ Stefano Rusponi, Marina Pivetta
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coupling: Vo (L - s)

Schematic of different angular
momentum reservoirs and Magnetic exchange Crystal field

their interactions potential: A(r)(f - s) potential: V, ()
doi:10.1063/5.0024019
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Magnetization

L b B i Magnetism in materials

PHYS-491 / 4 credits Tuesday 15:15-19:00

Introduction to magnetism in materials: spin and orbital degrees of freedom,
interactions between moments and some typical ordering patterns, selected
experimental techniques and their application in current research Ivica Zivkovic



Content

1) Spin dynamics in solids and nanostructures

- Basics: isolated atoms, crystal field, magnetic anisotropy energy, exchange energy

- Continuum approximation: Landau-Lifshitz-Gilbert (LLG) equation and explanation of its microscopic origin
- Magnetization dynamics induced by magnetic field and temperature

- Bit reversal: coherent vs incoherent reversal

- Designing and writing the recording media in HDD

2) Spin transfer torque (STT)

- Giant (GMR) and tunnel (TMR) magnetoresistance, magnetic tunnel junctions (MT)J)

- Writing by means of spin-polarized currents: Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation
- GMR/TMR for reading heads in HDD, and for MRAM operation

3) Spin orbitronics

- Spin-orbit interaction

- Spin-orbit torque (SOT) in bulk (Dresselhaus effect) and at interfaces (Rashba-Edelstein effect)
- SOT- MTJ vs. STT- MTJ: opportunities and challenges for devices

- SOT in exotic materials: oxides and 2D dichalcogenides

4) From the continuum approximation to quantum description

- Single atom magnets and single ion molecular magnets

- Quantum tunneling of magnetization

- Demagnetization induced by spin-phonon and spin-electron scattering

- Writing and reading single atom magnets with spin-polarized currents: spin polarized scanning tunneling microscopy (SP-STM)

=P
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Spin-orbit coupling (SOC): a perturbation but.... =P

DMI exchange

Rashba effect

Magnetization easy axis

Magnetocrystalline anisotropy
Spin-orbit: Energy (MCA)

AESO —_ )I,LS

Exchange of energy and moment
between spin and lattice

Spin-orbit torque

(SOT)
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S. Rusponi et al., Nature Mat. 2, 546 (2003).

Intra-Atomic Exchange Energy in Rare-Earth Adatoms

ar

Our research domain

cPrL

Ir{111)

M. Pivetta et al., Phys. Rev. X 10, 031054 (2020)
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Growth and study of nanostructure magnetic properties

Superlattice of single atom magnets
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R. Baltic et al., Nano Letters 16, 7610 (2016)
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Our research domain

cPrL

Growth and study of nanostructure magnetic properties
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One atom is the smallest magnet:
|deal binary system for “classic” magnetic
storage but also for qguantum applications
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Analytical solution for hydrogen and hydrogenic atoms (one electron) “P=L

#2 7 o2 1 1 1 Schrodinger equation for the motion of one
— V2 — V= E — = — 4+ — electron relative to the nucleus
2“ Ameor po Me TN Z: atomic number

> variable separation, radial and angular parts of wavefunctions: ¥,;,, = Ry,; (r)Y;™

n=1234.. principal guantum number; average distance of an electron from the nucleus; energy of the
electron: E, o —%°/ ,

[=0,1,..n—1 orbital guantum number;
magnitude of the angular moment of the electron: [I| = /I(l + 1)A

m=1[10—1,..,—1 magnetic quantum number; (21 4+ 1) values; [, = mh is the component of the angular
momentum with respect to an applied magnetic fieId usually along z

Orbital magnetic moment: u; = — ”—;l (up = — = 0.058 meV/T is the Bohr magneton )

Orbital magnetic moment along quantization axis : ul = ——l

electron configurations, identified by the shell: n = and the subshell: [

Il
nw O
-
QN

1 2 3 4 ..
K L M N ..
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Hydrogenic radial wavefunctions “P=L

Rn,g(?") — Nn,gplL23+l(p)e_pf2 a=ay= Ameoh” _ 0.0529 nm

n+1 mee?
is the Bohr radius

Orbital n [ R,; H=me
3/2
Is 1 0 ) E aPI2 p = &
i nag
3/2
1 (£
2s 2 0 W[_] (g_P)E—pf’z
a
| (7 32 - The polynomial term
2p 2 1 — [—] peP? dominates close to the nucleus
S - The exponential term describes
A the vanishing wave function at
3s 3 s 43| o (6—6p+pP)eP? large distances
\ )
3/2
1 (Z)
3p 3 1 = | (4-p)peP?
1/2
486"\ a
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Magnetic moment in solids

The Magnetic Periodic Table

Eight elements are ferromagnetic, four at RT °H
e
Twelve are antiferromagntic, one at RT 4.00

5B [6C ]’N 1O T°F J"Ne
Atomic symbol 1081 | 1201 | 1401 | 1600 | 19.00 | 20.18
Atomic weight

Atomic Number

Typical ionic charge

Antiferromagnetic Ty(K) < Z P,

e s e e

13A| 14S| 15P 168 17CI 18Ar
26.98 28.09 30.97 32.07 35.45 39.95
3+2p0

4

Ferromagnetic T.(K)

. < 8 A 2\ <
2T BV (1 PMn T ®Cu [°Zn ['Ga 2Ge [BAs [#Se [Br [Kr
47.88 50.94 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80
443 | 3+3a 2+ 305 EREKT NI GRS L 2 + 309 | 2 + 3d'0 | 3 + 34'°

< & <

\ \, s e
RTc 45Rh YioPd V7Ag 1°Cd Foin JoSn F'Sb (2Te ¥ [¥iXe
97% 1011
3+40

40Zr T*'Nb f*2Mo
91.22 9291 9594
4+40° |5+ 4q° 5+4d!

e, J v,

>_< b Yome Y e Y < <> <> < - \ - YR

%5Cs |°°Ba [*’La [?Hf [°Ta [“W [’°Re [®Os ["7Ir [Pt |’°Au [*°Hg [®'TI [%2Pb |¥3Bi [XPo [®RAt [*¢Rn
1320 | 1373 | 1389 |1785 | 1809 | 1838 |1862 | 1902 | 1922 | 1951 | 1970 | 2006 | 2044 | 2072 | 2090 209 2\ 2

14650 |2+650 |3+4p |4+50 |5+450 |6+50 |4+50 |3+505 |4+5d05 |2+50 | 1+500 |2+500

102.9 1064 107.9 1124 114.8 118.7 1218 1276 126.9 1313
3+40° |2+4d° |1+40'0 |2+4d"Y |3 +44d0 |4 +44d0

\ N

F7Fr [*%Ra [*°Ac
223 226.0 227.0
2+7s0 |3+5P

S Radioactive
D Diamagnet
: Paramagnet
Magnetic atom

@ Ferromagnet with T, > 290K () Antiferromagnet with Ty, > 290K [1 Antiferromagnet/Ferromagnet with Ty/T¢ < 290 K

J.M.D. Coey, Magnetism and magnetic materials (Cambridge Univ. Press)

3d
4d
5d

4f

cPrL
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Radial distribution probability in real atoms

Radial distribution probability: 2R3, (1) “ Charge density

Transition metals
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Radial distribution function as a function of the distance from
the nucleus r expressed in atomic units. Z* = Z — o is the
effective nuclear charge with oa screening constant. As the
principal qguantum number n increases, Z* remains almost
constant for d valence electrons and their radial distribution is
thus more and more extended.

J. Phys.: Condens. Matter 29 263001 (2017)

Lanthanides (or rare earths)
1.2

core

104 (Krj4d 104"

valence
5525p8(6s5d)°

0.8 -

0.6 -

0.4 -

0.2 -

e
4
A
T T # T

1 ——— T
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=P

Radial distribution probability for 4f, 5s, 5p, 5d, 6s, and 6p orbitals of

Nd atoms with the ([Kr]4d105s25p®6s24f45d%6p°) configuration.

J. Chem. Theory Comput. 19, 82-96 (2023)



Hydrogenic angular wavefunctions: Spherical harmonics

f?lj

1/2
1[—) cos Osin Be*'?

f 3 o0

+1

+2

+3

; 1/2
[—] (5 cos’8— 3 cos 6)
lé6m

1/2
21 _
Fl— | (5cos’0—1)sin Be™¢
641

105 1/2
— sin’@ cos @ e
32n

35 1/2
Fl— | sin’@e*?
64m
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Angular momentum

cPrL

electron density angular distribution

my Yj',m(e"p)
- 1/2
U. -
47t
- 1/2
0 (4—] cos 0
T
- 1/2
+1 ?(B—J sin @e™?
|8
- 1/2
0 (F] (3 cos’6—1)
T
- 12
+1 T 8— cos @sin Qet?
T
+2 (— sin’@ e21¢
321111J
7 \.‘HZ
0 — | (5c0s’60—3cos )
115.:‘1:)J
- 1/2
+1 _(g] (5 cos’0— 1)sin B¢
T
105"
+2 (—32 ] sin2@ cos @ e ¥21¢
T
= 1/2
+3 (—J sin> @ e3¢
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Angular momentum “P-L

electron density angular distribution

m=+2

m=+1

The angular part of the wave function describes the angular
distribution of the electron during its precessional motion

21



Orbitals (real wave functions): used in crystals and molecules “P=L
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Electron spin

Vnims = Ru (T) YlmS

Intrinsic angular momentum of the electron
=1 i b i : — h= Y3/ n
s=1/, spin quantum number, magnitude : |s]| s(s+1) 2

me=+1/, spin magnetic quantum number, component along z,
magnitude: s, = msh = +1/,h

me=+1,=1 my=-1/,=1

Spin magnetic moment: pg = —ge%B S

Spin magnetic moment along quantization axis: g, = —g, %BSZ

(up = % = 0.058 meV/T is the Bohr magneton; g, = 2.0023 is the electron g-factor)
e

Total magnetic moment of one electron: m;,; = us + u; = —'[%B (2s+ 1)

Total magnetic moment along z: Mior = U, + Uy, = _‘I%B (2s, +1,)

3
I
+

N| =

3

Il

|
N | =
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Spin-orbit interaction “P=L

The spin—orbit interaction (also called spin—orbit coupling) is a relativistic interaction of a particle’s spin
with its motion inside a potential.

magnetic field =77 T “
7 1d ( ) acting on the spin e \
) ) e V(r moment of the i
Atomic potentlal: V(T') = V/y =— r electron in its rest /
4'77,'807" r dr frame 7
Reference frame of the :’! /’.
. eh . eh 1 dV(T') . electron: E’ '/"
HSO - 2.2 S - (p A VV) - 2.2 . d S (p A r) - the electron’s spin “sees” a @ g
Zme C zme cerTr r positively charged nucleus ———"
orhiting around it, giving
2 rise to an electric current
_ eh 1 dV(T) _ and consequently a
—_— 2 2 - S l —_ Enl (’I‘)S ° l magnetic field produced by
Zmec r d?‘ this current
e S e I — L e e e
1,000 Bp
| .
- S p / 5d
5f
N 2 “E’ 3p / ad v
— @
Cnl - Rnl(r)fnl (T)Rnl (T)T dr E 100 5, 3d E
0 -
o
=
: . : S 10F ( E
Zincreases = V(r) increases = (y; increases 5 ¢ nl
-1 i L L | L L L I L L L | L i L I L L L
0 20 40 60 80 100

St&Sie06 Atomic number 2 24



Total angular momentum and spin-orbit coupling “P-L

2 A

Still only one electron but / and s are coupled
|1,s, l,,s,> = |1, S, J,Jz>

, =1, s=1/2
Total angular moment: j =1+ s 1

Ul =i+ D, Jz = mjh

j=1l=s|, ..,l+s;, my=j,..—j V'j = total angular

momentum guanfum /= 312 j=1/2
number mj = 3/2,1/2,-1/2,-3/2 mj= 1/2,-1/2
Total angular magnetic moment: u; = g] =£ j
Total angular magnetic momentalongz: y; = —g; ”—:jz
.B.: [ [ - = ——(2
N.B.: the total angular magnetic momentis also p; = g] - ZLj o My, ( s+ 1) N.B.: g; describes the fact that

I and s are not parallel

jG+D +s(s+1)—-1(l+1)

Landé g-factor gi=1+ —
2j+1)

25



Many-electron atoms CP=

All the electrons interact with one another, analytical solution not possible
orbital approximation = electron configuration (n, I)
Pauli exclusion principle = max two electrons per orbital

Z 2 Z 2 Z

p; e

Hatom = z (27?;6 + V(ri)) + zm + Z(li ’ Si) Enl(ri) + :UB(L + ZS) B = HC + Vee + V;o + VZeeman
i=1 o 1

i<j i=

L and S coupled by SOC

l i=1

Magnetic moment of one atom

>
- Hso = Vso :z&u(ﬁ)li'si =AL-S /1=+@ i?
| 3

u u Orbital magnetic moment:  p;_=-L Hp
m,; = + — BB _ B
at — Hs T K], (25'+L)_—g]7

' Spin Magnetic moment: s, = -2, ﬂYB
HB UB
Mgy = — Y (25, +L,) = —Jdj 712 Atomic magnetic moment:  mg, =-0;J, /_;LB




m Filling of open subshells in atoms “P-
| scxercise L] For the ground state it follows the Hund’s rules
Hund's rules: -
1) Total spin § = },; s; maximized (= S=M.=S5,/h) _
F ° —~  <===) Coulomb repulsion V.,

2) Total orbital momentum L = }};l; maximized (= L =M, = L,/h)

3) L and S couple parallel (J=|L+S]) if band more than half filled <===p Spin-orbit interaction Vi,
L and S couple antiparallel (J=|L-S|) if band less than half filled
o gnl
HSOZVSO:anl(ri)si'li:/ul's A—iﬁ
i
Ground state of Ti ([Ar] 4s23d?) Ground state of Fe ([Ar] 4s23d6)
+2 +1 0 -1 -2 +2 +1 0 -1 -2
Yimosd@=20y [ 4 sdlte it It it it
As(1=0) | tv a5 | 4

L:B’S:]_’,J:Z _ L:2,S:2,J:4
1 =-Lpg=-3ug, Magnetic moments =L g =-2 g,

Us=-2S g = -2 g, in the ground state Ms=-2S g =-4 g,
My = -0 J b = -4/3 pg (1! forgetting A1 1) Mat = 05 J g = O 1

27



Energy spectrum of an isolated 3d atom

=Pr-L

See exercises: 1.2 & 1.4

Hund’s rules mm)p max. S

Spectroscopic notation of multiplets terms: 251X, with X=S, P, D, F, G, H, |, ...

Slnglet
» |Ti->3d2/
Tri D | et

1S
— 4.6 eV V., 16V
1G V, 50-100 meV
— 0.8eV
Voeeman (B=1T) 0.1 -0.2 meV
. %
| —— 0.2 eV
401
— g1ev
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ — 3F 3
F } %50 meV &
o °F °Fy
-1.8eV 3F,
max. L min. J max. J
(band less than half filled) (band more than half filled)

3d transition metals Af rare earths

leV
300-500 meV

0.1 -0.6 meV
Z
e

Z
Vso = Z(l SOE)

l

Vzee = up(L + 2S) - B

forL=0,1,2,3,4,5,6, ..
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Third Hund’s rule and SOC “P=L

. See exercise: 1.3 eh? 1dV(r)
Hso = —

— — m
2méc? rodr 0 U= Su(r)s -1 Yime = Ru(m)Y, "o

To calculate Hy, we need to move from vectors (s, ) to operators (S, )

l occ

occ occ
AEso = Z<an1m0|H50|anlmG> = Z<Rnl|€nl(7‘)|Rnl><ylmio-i|i 'S |Ylmi0i> = (i z <Ylmi0i
L i

LS, +5 (Lys_ + l_S+)|Ylmiai>

i
for simplicity we will use the same symbol for
vectors and operators

A
Empirical formula: AEgy = AL - S = 5 |JU+1)—L(L+1)—-S(S+1)]
A=+ @ + (-) for shell less (more) than half filled
—2G Ladder operator:

z\ilYlm>=zi|l,m)=
=Ly =Jit+1) —mm+D|,m+1)
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Atom magnetic moment in real conditions “PEL

Atom described by quantum numbers [LSJJ,>, with J, assuming 2J+1 values between —/ and +J

At B =0T these 2J+1 values are degenerate in energy

At B # 0T the 2/+1 states are split -> Zeeman split State occupation depends on B and T (Boltzmann statistic)

Example: atom with J = 1/2

ex e_x ]z ].uBB

my,(B,T) =m' —m, = J,g;up(

two energy levels: +J, g, m;B
occupation probability: exp(+ J, g, mzB/k;T)

upB . 1
m,(B,T) = ugtanh(—— with |, = 5 and g, =g =2

kgT
E A )
tanh (X
%y I T
} T=0orB=w 100% 0%
>J, = I
ex>J, =112 l B=0orT=w 0 50% 50%
, B=055ksT/ug 05 75% 25%
4 =3 2 4
X
>
B 3.5
|gr> \]Z :'1/2 ————— ~1n N 30




m . (B,T): Brillouin function “P=L

3d7 (n=3, 1-2) —
L=1,5-32 — M=-9/2
L=3, $=3/2 —% :
=% < ' E=-my B :H_;g]]zB = upg;MB
Ground state of Co ([Ar] 4s2 3d°) B :
+2 +1 0 -1 -2 :
ALty Lty Ly L M=9/2
45 |ty .
L=3,5=3/2,1=9/2 B
1___—J=1/2
J MB ‘_r;
. — g ks9)B el
Mgt :Z z .UBHJMQ kT = .UBg]]B(x) x=] kpT _ ——Hgoo
LI
M=—] =
2] +1 2] +1 1 X
] — HBg]MB B(x) — COth ( X) - —COth(—
7 = z e ksT 2 2l 2l 2l -1 -
M=~]

Brillouin function 4 2 0 2 4
X
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m

Magnetic moment: quantum vs. classic description

=Pr-L

B
mat(B,T) = g/ B(x) x = J 2L
B
B(x) = 2];]_ ! coth (2];]_ ! x> - %coth(

Brillouin function

_ Omg, _ (ug ] +1))?

) 3kgT

quantum

X

2

)

B

4

A

classic

B

E
2T YA T
[77d9 [ dpsinpcosd e ksT
Mae(B,T) = p=>—— 7
[7Fd9 [ dpsing e TsT

=l mB

1 : :
L(x) = cothx — — Langevin function
X

_ Mg __H
0B 3kgT
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