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Moore’s law
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Development in electronic
devices based on reducing
transistor size



Evolution of transistor size
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Development in electronic
devices based on reducing
transistor size

S. M. Yakout; Journal of Superconductivity and Novel Magnetism (2020) 33:2557–2580

Leakage current due to 
quantum tunneling at 
the nanometric scale:

loss of information



Microprocessor power consumption
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https://semiengineering.com/as-nodes-advance-so-must-power-analysis/

Clothes iron: 10 W/cm2

Power: 2kW
Surface: 200 cm2



Data center power consumption
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Combining electron charge and spin: Spintronics
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Need of new technology allowing 

simultaneously:

1) Reduced memory size

2) Reduced power consumption

S. M. Yakout; Journal of Superconductivity and Novel Magnetism (2020) 33:2557–2580

electronics magnetism



Two success stories
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MRAM: Magnetic Random Access Memory

Reading head in HDD

Spin valve

Spin valve + spin torque



Magnetism in materials: localized vs delocalized spins
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Complementary magnetism courses during Spring semester
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LS

𝐻𝑠𝑜 = 𝜆 𝑳 ⋅ 𝑺

Introduction to magnetism in materials: spin and orbital degrees of freedom, 
interactions between moments and some typical ordering patterns, selected 
experimental techniques and their application in current research

Spintronics: development of devices using electron spin as an additional degree 
of freedom to boost performance. The course provides the basis necessary to 
understand and describe spin dynamics in solids and nanostructures. 

Spintronics: basics and applications

PHYS-510  /  4 credits  Thursday 08:15-12:00

Stefano Rusponi, Marina Pivetta

Magnetism in materials

PHYS-491  /  4 credits  Tuesday 15:15-19:00

Ivica Zivkovic

Schematic of different angular 
momentum reservoirs and 
their interactions
doi:10.1063/5.0024019



Content
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1) Spin dynamics in solids and nanostructures

- Basics: isolated atoms, crystal field, magnetic anisotropy energy, exchange energy

- Continuum approximation: Landau-Lifshitz-Gilbert (LLG) equation and explanation of its microscopic origin

- Magnetization dynamics induced by magnetic field and temperature

- Bit reversal: coherent vs incoherent reversal

- Designing and writing the recording media in HDD

2) Spin transfer torque (STT)

- Giant (GMR) and tunnel (TMR) magnetoresistance, magnetic tunnel junctions (MTJ)

- Writing by means of spin-polarized currents: Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation

- GMR/TMR for reading heads in HDD, and for MRAM operation

3) Spin orbitronics

- Spin-orbit interaction

- Spin-orbit torque (SOT) in bulk (Dresselhaus effect) and at interfaces (Rashba-Edelstein effect)

- SOT- MTJ vs. STT- MTJ: opportunities and challenges for devices

- SOT in exotic materials: oxides and 2D dichalcogenides

4) From the continuum approximation to quantum description

- Single atom magnets and single ion molecular magnets

- Quantum tunneling of magnetization

- Demagnetization induced by spin-phonon and spin-electron scattering

- Writing and reading single atom magnets with spin-polarized currents: spin polarized scanning tunneling microscopy (SP-STM)



Spin-orbit coupling (SOC): a perturbation but….
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Spin-orbit: 
Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺

Magnetization easy axis

Magnetocrystalline anisotropy 
Energy (MCA)

Exchange of energy and moment 
between spin and lattice

Atomic moment

DMI exchange

Rashba effect

Spin-orbit torque 
(SOT)



Our research domain
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Growth and study of nanostructure magnetic properties

Superlattice of single atom magnets

R. Baltic et al., Nano Letters 16, 7610 (2016)

2D clusters: Pt core and Co shell

S. Rusponi et al., Nature Mat. 2, 546 (2003).

M. Pivetta et al., Phys. Rev. X 10, 031054 (2020)

Intra-Atomic Exchange Energy in Rare-Earth Adatoms



Our research domain
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Growth and study of nanostructure magnetic properties

One atom is the smallest magnet:
Ideal binary system for “classic” magnetic 
storage but also for quantum applications
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Analytical solution for hydrogen and hydrogenic atoms (one electron)
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𝑛 = 1, 2, 3, 4… principal quantum number; average distance of an electron from the nucleus;  energy of the 

electron:   𝐸𝑛 ∝ − ൗ𝑍2
𝑛2

𝑙 = 0, 1, …𝑛 − 1 orbital quantum number; 

magnitude of the angular moment of the electron: 𝒍 = 𝑙(𝑙 + 1)ℏ

𝑚 = 𝑙, 𝑙 − 1, … ,−𝑙 magnetic quantum number; (2𝑙 + 1) values; 𝑙𝑧 = 𝑚ℏ is the component of the angular 
momentum with respect to an applied magnetic field, usually along z

Orbital magnetic moment: 𝝁𝑙 = −
𝜇𝐵

ℏ
𝒍 (𝜇𝐵 =

𝑒ℏ

2𝑚𝑒
= 0.058 meV/T is the Bohr magneton )

Orbital magnetic moment along quantization axis : 𝜇𝑙
𝑧
= −

𝜇𝐵

ℏ
𝑙𝑧

electron configurations, identified by the shell:     𝑛 = 1 2 3 4 … and the subshell:    𝑙 = 0 1 2 3 …
K    L     M    N  ... s     p    d     f     ...   

→ variable separation, radial and angular parts of wavefunctions:

Schrödinger equation for the motion of one 
electron relative to the nucleus
Z: atomic number

𝛹𝑛𝑙𝑚 = 𝑅𝑛𝑙(𝑟)𝑌𝑙
𝑚



Hydrogenic radial wavefunctions
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𝑎 = 𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒𝑒
2 = 0.0529 𝑛𝑚

is the Bohr radius

𝜇 ≈ 𝑚𝑒

𝜌 =
2𝑍𝑟

𝑛𝑎0

- The polynomial term 
dominates close to the nucleus

- The exponential term describes 
the vanishing wave function at 
large distances



Magnetic moment in solids
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3d

4d

5d

4f



Radial distribution probability in real atoms 

18J. Chem. Theory Comput. 19, 82-96 (2023)J. Phys.: Condens. Matter 29 263001 (2017)

Radial distribution function as a function of the distance from 
the nucleus r expressed in atomic units. 𝑍∗ = 𝑍 − 𝜎 is the 
effective nuclear charge with s a screening constant. As the 
principal quantum number n increases, Z* remains almost 
constant for d valence electrons and their radial distribution is 
thus more and more extended.

Radial distribution probability for 4f, 5s, 5p, 5d, 6s, and 6p orbitals of 
Nd atoms with the ([Kr]4d105s25p66s24f45d06p0) configuration. 

Lanthanides (or rare earths)

Radial distribution probability: 𝑟2𝑅𝑛𝑙
2 (𝑟) Charge density

Transition metals

𝜌 = 𝑍∗𝑟 (𝑎0)



Hydrogenic angular wavefunctions: Spherical harmonics
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s

p

d

f



Angular momentum
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s

p

d

f

𝑚 = 0 ± 1 ± 2 ± 3

𝑙 = 3

𝑙 = 2

𝑙 = 1

𝑙 = 0

electron density angular distribution 

s

p

d

f



Angular momentum

21𝑚 = 0 ± 1 ± 2 ± 3

𝑙 = 3

𝑙 = 2

𝑙 = 1

𝑙 = 0

electron density angular distribution 
𝑚=+2

𝑚=+1

𝑚=0

𝑚=-2

𝑚=-1

The angular part of the wave function describes the angular 
distribution of the electron during its precessional motion

d



Orbitals (real wave functions): used in crystals and molecules
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𝒅𝟑𝒛𝟐−𝒓𝟐



Electron spin
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Intrinsic angular momentum of the electron

𝑠 = Τ1 2 spin quantum number, magnitude : |𝒔| = 𝑠(𝑠 + 1)ℏ = ൗ3 2ℏ

𝑚𝑠 = ± Τ1 2 spin magnetic quantum number, component along z ,  
magnitude: 𝑠𝑧 = 𝑚𝑠ℏ = ± Τ1 2ℏ

𝑚𝑠 = + Τ1 2 = ↑, 𝑚𝑠 = − Τ1 2 = ↓

Spin magnetic moment: 𝝁𝑠 = −𝑔𝑒
𝜇𝐵

ℏ
𝒔

Spin magnetic moment along quantization axis: 𝜇𝑠
𝑧
= −𝑔𝑒

𝜇𝐵

ℏ
𝑠𝑧

(𝜇𝐵 =
𝑒ℏ

2𝑚𝑒
= 0.058 meV/T is the Bohr magneton; 𝑔𝑒 = 2.0023 is the electron g-factor )

𝑚𝑡𝑜𝑡
𝑧
= 𝜇𝑠𝑧 + 𝜇𝑙𝑧 = −

𝜇𝐵
ℏ
(2𝑠𝑧 + 𝑙𝑧)

Total magnetic moment of one electron: 𝒎𝑡𝑜𝑡 = 𝝁𝑠 + 𝝁𝑙 = −
𝜇𝐵
ℏ
(2𝒔 + 𝒍)

Total magnetic moment along z:

𝛹𝑛𝑙𝑚𝑠 = 𝑅𝑛𝑙(𝑟)𝑌𝑙
𝑚𝑠



Spin-orbit interaction
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𝐻𝑆𝑂 =
𝑒ℏ

2𝑚𝑒
2𝑐2

𝒔 ⋅ 𝒑 ∧ 𝜵𝑉 =
𝑒ℏ

2𝑚𝑒
2𝑐2

1

𝑟

𝑑𝑉 𝑟

𝑑𝑟
𝒔 ⋅ 𝒑 ∧ 𝒓 =

= −
𝑒ℏ2

2𝑚𝑒
2𝑐2

1

𝑟

𝑑𝑉 𝑟

𝑑𝑟
𝒔 ⋅ 𝒍 = 𝜉𝑛𝑙 𝑟 𝒔 ⋅ 𝒍

𝜁𝑛𝑙 = න

0

∞

𝑅𝑛𝑙 𝑟 𝜉𝑛𝑙 𝑟 𝑅𝑛𝑙
∗ 𝑟 𝑟2𝑑𝑟

The spin–orbit interaction (also called spin–orbit coupling) is a relativistic interaction of a particle’s spin 
with its motion inside a potential.

𝑉 𝑟 =
𝑍𝑒

4𝜋𝜀0𝑟
Atomic potential:

St&Sie06

Z increases   𝑉 𝑟 increases   𝜁𝑛𝑙 increases 𝜁𝑛𝑙

𝜵𝑉 =
1

𝑟

𝑑𝑉 𝑟

𝑑𝑟
𝒓



Total angular momentum and spin-orbit coupling
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Still only one electron but l and s are coupled

𝑙, 𝑠, 𝑙𝑧, 𝑠𝑧 𝑙, 𝑠, 𝑗, 𝑗𝑧

Total angular moment: 𝒋 = 𝒍 + 𝒔

𝒋 = 𝑗(𝑗 + 1)ℏ, 𝑗𝑧 = 𝑚𝑗ℏ

j = |𝑙 − 𝑠|, … , 𝑙 + 𝑠;      𝑚𝑗 = 𝑗, …− 𝑗

l=1, s=1/2

𝐣

𝐥

𝐬

N.B.: the total angular magnetic moment is also  𝝁𝑗 = −𝑔𝑗
𝜇𝐵

ℏ
𝒋  𝒎𝑡𝑜𝑡 = −

𝜇𝐵

ℏ
(2𝒔 + 𝒍)

Total angular magnetic moment:  𝝁𝑗 = −𝑔𝑗
𝜇𝐵

ℏ
𝒋

Total angular magnetic moment along z :  𝜇𝑗
𝑧
= −𝑔𝑗

𝜇𝐵

ℏ
𝑗𝑧

𝑔𝑗 = 1 +
𝑗 𝑗 + 1 + 𝑠 𝑠 + 1 − 𝑙(𝑙 + 1)

2𝑗(𝑗 + 1)
Landé g-factor

N.B.: 𝑔𝑗 describes the fact that 

l and s are not parallel



Many-electron atoms
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All the electrons interact with one another, analytical solution not possible
orbital approximation → electron configuration (n, l) 
Pauli exclusion principle → max two electrons per orbital

𝐻𝑆𝑂 = 𝑉𝑆𝑂 =෍

𝑖

𝜉𝑛𝑙 𝑟𝑖 𝒍𝑖 ⋅ 𝒔𝑖 = 𝜆𝑳 ⋅ 𝑺 𝜆 = ±
𝜁𝑛𝑙
2𝑆

𝑚𝑎𝑡
𝑧
= −

𝜇𝐵
ℏ

2𝑆𝑧 + 𝐿𝑧 = −𝑔𝐽
𝜇𝐵
ℏ
𝐽𝑧

𝒎𝑎𝑡 = 𝝁𝑆 + 𝝁𝐿 = −
𝜇𝐵

ℏ
2𝑺 + 𝑳 = − 𝑔𝐽

𝜇𝐵

ℏ
𝑱

Magnetic moment of one atom

𝐻𝑎𝑡𝑜𝑚 =෍

𝑖=1

𝑍

(
𝑝𝑖
2

2𝑚𝑒
+ 𝑉(𝑟𝑖)) +෍

𝑖<𝑗

𝑍
𝑒2

𝑟𝑖 − 𝑟𝑗
+෍

𝑖=1

𝑍

(𝒍𝑖 ⋅ 𝒔𝑖) 𝜉𝑛𝑙(𝑟𝑖) + 𝜇𝐵(𝑳 + 2𝑺) ⋅ 𝑩 = 𝐻𝐶 + 𝑉𝑒𝑒 + 𝑉𝑠𝑜 + 𝑉𝑍𝑒𝑒𝑚𝑎𝑛

𝑳 = ෍

𝑖=1

𝑍

𝒍𝑖

𝑺 = ෍

𝑖=1

𝑍

𝒔𝑖

Orbital magnetic moment: 𝜇𝐿𝑧 = -Lz

mB
ℏ

Spin Magnetic moment: 𝜇𝑆𝑧 = -2 Sz

mB
ℏ

Atomic magnetic moment: 𝑚𝑎𝑡
𝑧
= - gJ Jz

mB
ℏ

L and S coupled by SOC



Filling of open subshells in atoms
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For the ground state it follows the  Hund’s rules 

Hund's rules:
1) Total spin 𝑺 = σ𝑖 𝒔𝑖 maximized (  S = MS = Sz/ℏ) 

2) Total orbital momentum 𝑳 = σ𝑖 𝒍𝑖 maximized (  L = ML = Lz/ℏ) 

3) L and S couple parallel (J=|L+S|) if band more than half filled
L and S couple antiparallel (J=|L-S|) if band less than half filled

+2 +1 0 -1 -2

Ground state of Fe ([Ar] 4s2 3d6)

L = 2, S = 2, J = 4
mL = -L mB = -2 mB , 

mS = -2 S mB = -4 mB ,

mat = -gJ J mB =- 6 mB

3d

4s

+2 +1 0 -1 -2

3d (l = 2)

4s (l = 0)

L = 3, S = 1, J = 2
mL = -L mB = -3 mB , 

mS = -2 S mB = -2 mB ,

mat = -gJ J mB = -4/3 mB

Ground state of Ti ([Ar] 4s2 3d2 )

Yl
m

Spin-orbit interaction  VSO

Coulomb repulsion   Vee

Magnetic moments
in the ground state

(!! forgetting ℏ ‼)

𝐻𝑆𝑂 = 𝑉𝑆𝑂 =෍

𝑖

𝜉𝑛𝑙 𝑟𝑖 𝒔𝑖 ⋅ 𝒍𝑖 = 𝜆𝑳 ⋅ 𝑺 𝜆 = ±
𝜁𝑛𝑙
2𝑆

See exercise: 1.1



Energy spectrum of an isolated 3d atom
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Spectroscopic notation of multiplets terms: 2S+1XJ with X= S, P, D, F, G, H, I, … for L = 0, 1, 2, 3, 4, 5, 6, …

S=0

S=1

Singlet

Triplet

1S

1G

1D

E
n
er

g
y

Ni -> 3d8

3P

3F

3F4

3F3

3F2
3F4

3F3

3F2

max. S max. L min. J
(band less than half filled)

max. J
(band more than half filled)

4.6 eV

0.8 eV

-0.1 eV

0.2 eV

-1.8 eV

≈ 50 meV

Jz=-2

Jz=+2

≈ 0.2 meV

Ti -> 3d2

interaction term 3d transition metals 4f rare earths

Vee 1 eV 1eV

Vso 50-100 meV 300-500 meV

VZeeman (B=1T) 0.1 -0.2 meV 0.1 -0.6 meV

𝑉𝑒𝑒 = ෍

𝑖<𝑗

𝑍
𝑒2

𝑟𝑖 − 𝑟𝑗

𝑉𝑆𝑂 = ෍

𝑖=1

𝑍

(𝒍𝑖 ⋅ 𝒔𝑖)𝜉(𝑟𝑖)

𝑉𝑍𝑒𝑒 = 𝜇𝐵(𝑳 + 2𝑺) ⋅ 𝑩

Hund’s rules

See exercises: 1.2 & 1.4 



Third Hund’s rule and SOC
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𝐻𝑆𝑂 = −
𝑒ℏ2

2𝑚𝑒
2𝑐2

1

𝑟

𝑑𝑉 𝑟

𝑑𝑟
𝒔 ⋅ 𝒍 = 𝜉𝑛𝑙 𝑟 𝒔 ⋅ 𝒍 𝛹𝑛𝑙𝑚𝜎 = 𝑅𝑛𝑙(𝑟)𝑌𝑙

𝑚𝜎

Δ𝐸𝑆𝑂 =෍

𝑖

𝑜𝑐𝑐

𝛹𝑛𝑙𝑚𝜎 𝐻𝑆𝑂 𝛹𝑛𝑙𝑚𝜎 =෍

𝑖

𝑜𝑐𝑐

𝑅𝑛𝑙 𝜉𝑛𝑙 𝑟 𝑅𝑛𝑙 𝑌𝑙
𝑚𝑖𝜎𝑖 መ𝒍 ⋅ ො𝒔 𝑌𝑙

𝑚𝑖𝜎𝑖 = 𝜁𝑛𝑙෍

𝑖

𝑜𝑐𝑐

𝑌𝑙
𝑚𝑖𝜎𝑖 𝑙𝑧𝑠𝑧 +

1
2 (𝑙+𝑠− + 𝑙−𝑠+) 𝑌𝑙

𝑚𝑖𝜎𝑖

See exercise: 1.3

To calculate HSO we need to move from vectors (𝒔, 𝒍) to operators (ො𝒔, መ𝒍)

for simplicity we will use the same symbol for 
vectors and operators

Ladder operator: 

መ𝑙± ۧ𝑌𝑙
𝑚 = መ𝑙± ۧ𝑙,𝑚 =

= 𝑙± ۧ𝑌𝑙
𝑚 = 𝑙 𝑙 + 1 − 𝑚(𝑚 ± 1) ۧ𝑙,𝑚 ± 1

Empirical formula: Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺 =
𝜆

2
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

+ (-) for shell less (more) than half filled𝜆 = ±
𝜁𝑛𝑙
2𝑆



Atom magnetic moment in real conditions
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Atom described by quantum numbers |LSJJz>, with Jz assuming 2J+1 values between –J and +J

At B = 0 T these 2J+1 values are degenerate in energy
At B ≠ 0 T the 2J+1 states are split -> Zeeman split

E

B

ex> Jz =1/2

gr> Jz =-1/2

s
two energy levels: ± Jz gJ mBB

occupation probability: exp(± Jz gJ mBB/kBT)

𝑚𝑎𝑡 𝐵, 𝑇 = 𝑚↑ −𝑚↓ = 𝐽𝑧𝑔𝐽𝜇𝐵(
𝑒𝑥

𝑒𝑥 + 𝑒−𝑥
−

𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
) = 𝐽𝑧𝑔𝐽𝜇𝐵 𝑡𝑎𝑛ℎ( 𝑥) 𝑥 =

𝐽𝑧𝑔𝐽𝜇𝐵𝐵

𝑘𝐵𝑇

𝑚𝑎𝑡 𝐵, 𝑇 = 𝜇𝐵 tanh(
𝜇𝐵𝐵

𝑘𝐵𝑇
) 𝑤𝑖𝑡ℎ 𝐽𝑧 =

1

2
𝑎𝑛𝑑 𝑔𝐽 = 𝑔 = 2

Example: atom with J = 1/2

tanh(x) Occupation gr Occupation ex

T = 0 or B = ∞ 1 100% 0%

B = 0 or T = ∞ 0 50% 50%

B = 0.55 kBT/mB 0.5 75% 25%

tanh (x)

x

State occupation depends on B and T (Boltzmann statistic)



mat (B,T): Brillouin function
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𝑥 = 𝐽
𝜇𝐵𝑔𝐽𝐵

𝑘𝐵𝑇

𝐸 = −𝒎𝑎𝑡 ⋅ 𝑩 =
𝜇𝐵

ℏ
𝑔𝐽𝐽𝑧𝐵 = 𝜇𝐵𝑔𝐽𝑀𝐵

𝑚𝑎𝑡 =
1

𝑍
෍

𝑀=−𝐽

𝐽

𝜇𝐵𝑔𝐽𝑀𝑒
− 𝜇𝐵𝑔𝐽𝑀𝐵

𝑘𝐵𝑇 = 𝜇𝐵𝑔𝐽𝐽𝐵(𝑥)

𝑍 = ෍

𝑀=−𝐽

𝐽

𝑒
− 𝜇𝐵𝑔𝐽𝑀𝐵

𝑘𝐵𝑇

𝐵 𝑥 =
2𝐽 + 1

2𝐽
coth

2𝐽 + 1

2𝐽
𝑥 −

1

2𝐽
coth(

𝑥

2𝐽
)

Brillouin function

+2 +1 0 -1 -2

Ground state of Co ([Ar] 4s2 3d6)

L = 3, S = 3/2, J = 9/2

3d

4s
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E Langevin function

classicquantum

𝑚𝑎𝑡(𝐵, 𝑇) = 𝜇
0׬
2𝜋
𝑑𝜗 0׬

𝜋
𝑑𝜙 sin𝜙 cos 𝜗 𝑒

−
𝐸

𝑘𝐵𝑇

0׬
2𝜋
𝑑𝜗 0׬

𝜋
𝑑𝜙 sin𝜙 𝑒

−
𝐸

𝑘𝐵𝑇

= 𝜇𝐿(
𝑚𝐵

𝑘𝐵𝑇
)

𝐿 𝑥 = coth 𝑥 −
1

𝑥

𝜒 =
𝜕𝑚𝑎𝑡

𝜕𝐵
=
(𝜇𝐵𝑔𝐽 𝐽(𝐽 + 1) )2

3𝑘𝐵𝑇

𝜒 =
𝜕𝑚𝑎𝑡

𝜕𝐵
=

𝜇2

3𝑘𝐵𝑇

𝐵 𝑥 =
2𝐽 + 1

2𝐽
coth

2𝐽 + 1

2𝐽
𝑥 −

1

2𝐽
coth(

𝑥

2𝐽
)

𝑥 = 𝐽
𝜇𝐵𝑔𝐽𝐵

𝑘𝐵𝑇
𝑚𝑎𝑡(𝐵, 𝑇) = 𝜇𝐵𝑔𝐽𝐽𝐵(𝑥)

𝐸 = −𝒎𝑎𝑡 ⋅ 𝑩 = 𝜇𝐵𝑔𝐽𝐽𝑧𝐵 𝐸 = −𝝁 ⋅ 𝑩 = 𝜇𝐵 cos 𝜃

Brillouin function


